

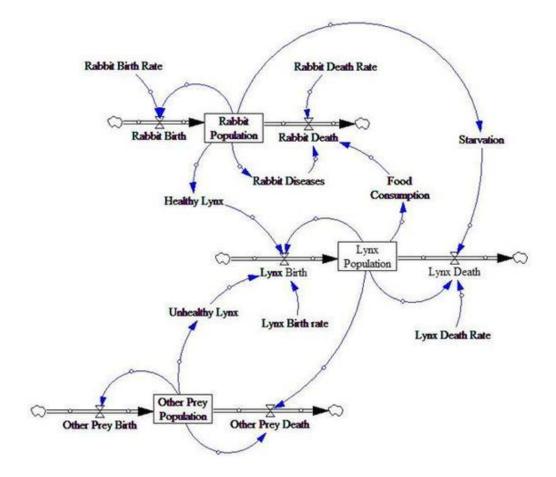
SYSTEM-DYNAMIC LOOK ON FUNCTIONALITY OF COMPLEX SYSTEM: ENVIRONMENT-GOVERNANCE-ECONOMY-SOCIAL SPHERE

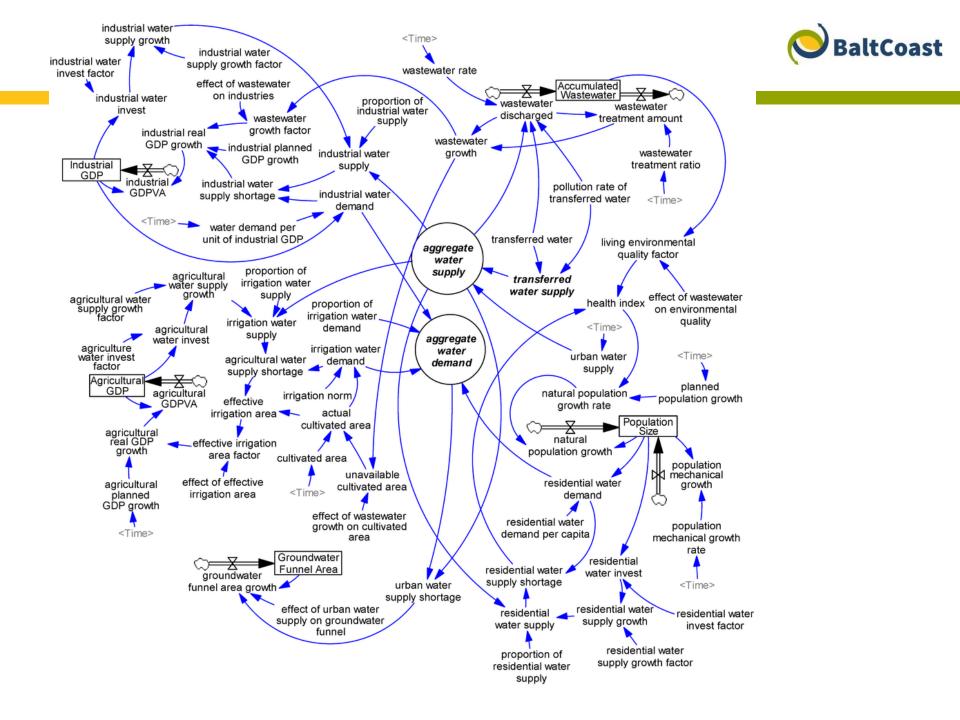
Asoc. Prof. Iveta Steinberga Dr. geogr. Evija Terauda Prof. Raimonds Ernšteins Asoc.Prof. Ivars Kudreņickis

INTENSE - Integrated Doctoral Program for Environmental Policy, Management and Technology

A Systems Approach Framework for Coastal Research and Management in the Baltic

- Understanding functionality of coastal ecosystem and even wider of coastal socio-ecological system (SES) and its governance from environmental, social and economic point of view at existing state is challenging and complex, while analysing of future scenarios under various stressors could be solved only at site per site level or by using complex mathematical systems.
- Coastal ecosystems are very sensitive to various factors such as environmental changes and anthropogenic impacts as well.
- Even minor changes in temperature, salinity and nutrient availability can lead to substantial changes in life cycle, e.g. the runoff can result in higher nutrient and/or pollutant levels in coastal waters, algae blooms that can be dangerous to both humans and marine life.




Adaptation to the climate change include evaluation of the risks for coastal ecosystems through direct impacts what could result in various ways:

- (1) loss or changes to habitats and their associated organisms;
- (2) warming could force species to move to higher latitudes or elevations to maintain the same environmental temperatures;
- (3) sea level rise will be accompanied by saltwater intrusion into freshwater habitats, resulting that some could be forced to relocate or die, thus removing predators or prey that are critical in the existing food chain.

... systemdynamic approach can be applied from very simple to complex systems

BaltCoast

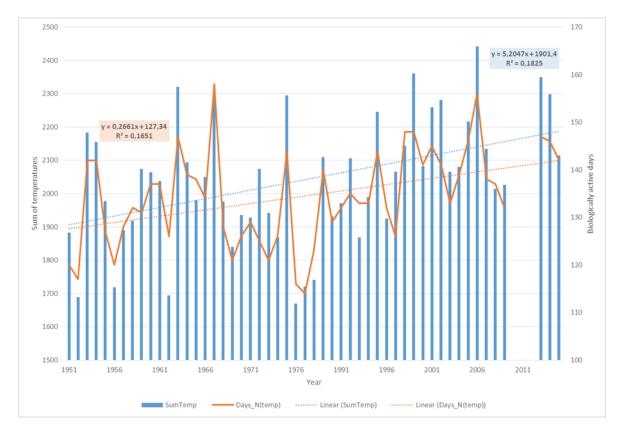
Main tasks

- 1. Elaboration of coastal model (Salacgriva case), based on SAF methodology
- 2. Data collection, analysis of substantiality
- 3. Base scenario or "as it is" scenario
- 4. Results analysis of base scenario
- 5. Modelling and analysis of hypothetical scenario

Methodology

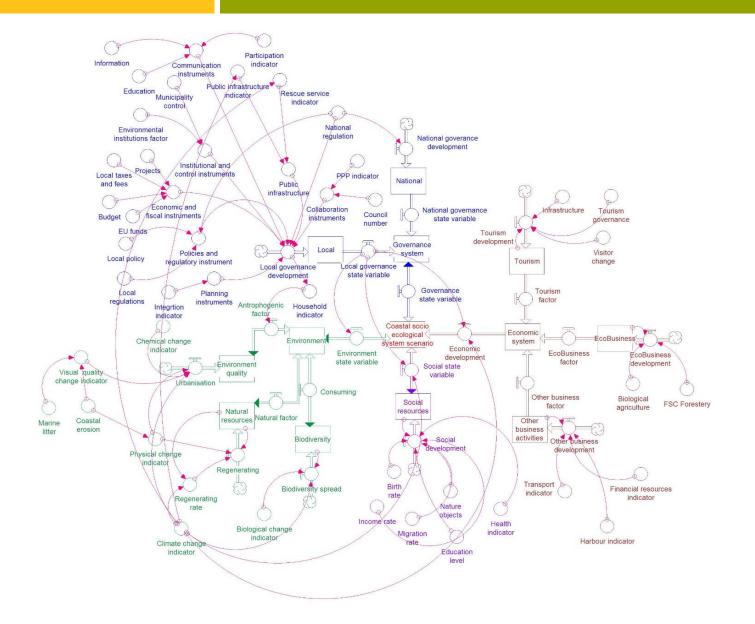
- Systems Analysis Framework (SAF) methodology:
 - definition of system borders,
 - understanding of system borders,
 - identification of crucial components,
 - building of model,
 - testing,
 - verifying processes.

Materials & data



No	Par	Parameter Vai		Value	ue Unit		Period		I	Data Source		
1	Nat	Natural monuments 6		6	#number		201	2016		Actual data ¹		
2		Marine 11 Biodiverse		rse areas	areas 64		#num				Monitoring data ⁹	
	25	Health indicator			negative		trend		2010-2014		HealthData ¹⁶	
26		Share of higher education		14,3	14,3		%		2011		Census, 2011	
4	27 Lifelong lea		learning	Data not	ata not available							
· ·	28	<u> </u>		Data not	Data not available							
29		Nature objects, biotopes		11	11		#number		2015		Monitoring data ⁹	
5	30			157	157		#number		2006		Mazo ostu ¹⁷	
5.	31	Visual change quality		1	1		Good quality		2015		Field asessment	
6	32	Dredge works Data not available										
7	33	Financia indicator	al resources Data not available									
8	34	Agricultural land River (Salaca) ecological quality indicator		20,5	20,5		%		1995-2012		GIS Latvija 10.2 (2015); Corine Land Cover (2012)	
	35			Good	Good		-		2010-2015		Gauja basin management plan, 2010- 2015	
9	36	Number of mobile WC		e 15	15		#number		2016		Actual data	
	37	Equipt sites		10	10		#number		2016		Actual data	
	38			10	10		#number		2016		Actual data	
10	39	Tourism centers		1	1		#number		2016		Actual data	
	40	Swim water qual		ty Good	Good		-		2010-2015		Gauja basin management plan, 2010- 2015	
		·		1	AVG=6,56			1				1
			23 Income rate		252-32		2 EUR		2010-			
	24		Migration rate, saldo		-3;-3;-31;-6		abs	abs		1-2014	CSB ¹⁵	

Preparation of input data


Example: variable «Biologically active days»

Number of biologically active days, 1951 – 2015

Model: coastal SEGS

Results (1)

Driving force	Formulae	Descriptives
Climate change (CIC)	ClC = BAD * 0.13 + SWD * 0.35 - PED * 0.28	BAD – biologically active days SWD – strong wind days PED – precipitation extreme days
Coastal changes (CoC)	CoC = VCQ * 0.05 + VPD * 0.01 + VSS * 0.01 + ML * 0.05	VCQ – visual change quality VPD – volume of primary dune VSS – volume of seashore silt ML – marine litter
Environment changes (EC)	EC = NP * 0.05 + SEQI * 0.05 - SWQ * 0.01 + APS * 0.1	NP – noise pollution SEQI – Salaca ecological quality indicator SWQ – swim water quality APS – air pollution sources
Structural changes (SC)	SC = NM _{WC} * 0.25 + TF * 0.1 + ES * 0.15 + EBF * 0.10 + E * 0.05 + NV * 0.3	NM _{wc} – number of mobile WC TF – traffic flow ES – equipt sites EBF – employment in bio-farming E- employment NV – number of visitors
Impact asessment (IA)	IA = SC * 0.8 + EC * 0.05 + CoC * 0.1 + ClC * 0.05	CIC – climate change CoC – coastal changes EC – environment changes SC – structural changes

Rezults (2)

Parameter	Baseline	Change from baseline (%)
Number of biologically active days	137 days	++ (13)
Number of strong wind cases	51 cases	++ (35)
Precipitation extreme cases	83 cases	(-28)
Volume of primary dune	2–4 m ³ /m; Class 2	+ (<1)
Volume of seashore	10–15 m ³ /m; Class 3	+ (<1)
Visitors (tourists)	1000 #/day	++ (30)
Mobile WC	15	++ (25)
Traffic flow	4399	+ (10)
Air pollution sources	4418	+ (10)
Noise pollution sources, level	High	+ (5)
Marine litter	104 pieces	+ (5)
Swim water quality	Good	- (-1)
Employment (crafts)	15	+ (5)
Employment in biological farming, forestry	10	+ (10)
Visual quality change	Good	+/- (5/-5)
Salaca ecological quality indicator	Good	- (-5)
Equipped sites	10	- (-15)

Paskaidrojumi: (+/-) – nebūtiskas izmaiņas; (++/--) – būtiskas izmaiņas

Conclusions

- 1. Systemic analysis of influencing factors shows main 15 key factors, which have been chosen during the study out of initially selected 40 factors sufficiently characterising coastal socioecosystem and were included into the model in order to describe live and open, but also complex coastal system.
- 2. Detailed analysis, formulation process indicates main 4 agglomerated process drivers environmental, coastal, climate and structural, while structural changes indicates most impressive impact.
- 3. It should be noted that some of factors are independent and for short term period couldn't be affected by human while just few of these factors (e.g. structural changes in the system) are human dependent.
- 4. Elaborated tourism scenario shows that increase of tourists actually will have comparatively minor influence on coastal socio-ecosystem. It's expected that even climate change impact will be more evident.

During the experts discussions SAF application shows positive practical results for several reasons:

- 1. during the model development phase crucial data and knowledge gaps were identified leading to practical steps and solutions between any new measures and future scenarios;
- 2. developed model shows kind of universality, at any development point model could be reduced or made wider according to necessity of particular social-ecological governance system.
- 3. tested conceptual complex system dynamic model and STELLA modelling software approach applied are showing their eventual applicability and flexibility to use it for other processes, territories and different local coastal/municipal development scenarios after some revisions depending on related new specifics.

Thank you!

Funding acknowledgements are given to the EU BONUS Program BaltCoast project – A System Approach Framework for Coastal Research and Management in the Baltic (call2014–15).

Environmental Science Department Faculty of Geography and Earth Sciences, University of Latvia Jelgavas Str. 1, Riga, LV1004 Iveta.Steinberga@lu.lv

