

Solid Waste and Hazardous Waste Treatment Engineering – 3 credits (Compulsory course)

Spring semester, 2020-2021

Cooordinator	Nguyen Thi Van Ha
Credits	4.5 ECTS (Compulsory course), 33.75 in-class hours
Lecturers	Nguyen Xuan Truong (HCMUNRE, Vietnam)
	Nguyen Thi Van Ha (HCMUNRE, Vietnam)
	Le Hoang Nghiem (HCMUNRE, Vietnam)
	Huynh Thi Ngoc Han (HCMUNRE, Vietnam)
Level	MSc and PhD courses
Host institution	Faculty of Environment, HCMUNRE, Vietnam
Course duration	15 weeks (Fall 2021 -2022)

Summary

This course provides specific and professional knowledge on municipal waste, industrial waste and hazardous waste such as: collection system, classification and transportation; Recycle and treatment technologies, sanitation disposal; legal responsibles, regulations, policies and incentives in Viet Nam and in some countries on solid waste and hazardous waste management.

Students will be able to calculate technical specification and requirements for installing equipment, facilities, designing and operating the waste treatment system. Students have the vision toward zero emission and are able to apply the circular economic concept to waste management.

Target student audiences

Master or PhD students majoring in environmental engineering, environmental sciences, environmental management, etc.

Prerequisites

Required courses (or equivalents): Environmental Science Foundation

Aims and objectives

The course is aimed to introduce specific knowledge about solid waste and hazardous waste treatment engineering and orientate students' capacity to circular economic and zero waste emission.

Students will develop their professional skills to be able to design and operate the waste treatment system and to study on advanced technologies.

Course goals (CGs)	Course goal description
CG1	Explain and analyze waste database such as composition, characteristics and sources of different types of wastes as well as their impacts on the environment and human health.
CG2	Analyze and select effective routes for collection of waste, classification as well as waste transportation facilities; Promote waste minimization and on-site classification
CG3	Able to propose technology, design and operate facilities for recycling and treating solid waste and hazardous waste for the specific cases
CG4	Proficiently apply the regulations of solid waste and hazardous waste management on different subjects such as: disposers, collectors and transfers, and treatment investors, managers, etc.
CG5	Develop innovation skills, logical thinking, problem-solving skills and leadership for working in group to develop and assess a waste treatment design or an integrated waste management system.

General learning outcomes:

By the end of the course, successful students will achieve the following course expected learning outcomes (CELO):

CELO	CELO Description
Knowledge and U	Inderstanding:
CELO1	Compare the composition, characteristics and sources of different types of wastes.
CELO2	Analyze the adverse impacts of waste types on environment and health and requirement of integrated waste management.

1

ı

CELO3	Analyze engineering specification and can select the waste sorting, collection, transfer systems which are suitable and efficiency for a specific case; Understand the smart waste management system.		
CELO4	Assess and propose the suitable technology for recycling and treating municipal waste, industrial waste and hazardous waste.		
CELO5	Institutional and stakeholder analysis on waste management.		
CELO6	Compare legal legislations on solid waste and hazardous waste management versus disposers, collectors and transfers, and treatment investors, managers, etc.		
Skills outcome			
CELO7	Capable to apply advanced waste treatment technology, able to calculate and degsin waste recycle and treatment facilities such as: composting, incinerator or sanitation landfill		
CELO8	Work in group to design or operate a practical model of waste treatment facilities.		
Responsibility sk	Responsibility skills		
CELO9	Develop innovation, logical thinking, problem-solving capacity and leadership for working in group on waste management		

Overview of sessions and teaching methods

The course will make most of interactive and self-reflective methods of teaching and learning and, where possible, avoid standing lectures and presentations.

Learning

• Video presentations

methods

- Fieldtrip
- Problem Based Learning
- Group Based Learning
- Project cased study
- Literature review
- Calculation assignments
- Case studies

Overview of learning sessions

Page 4

Chapter	Description	Credit hours	Lectures	Practice and Discussion
Chapter 1	Course description	1.5	1.5	0
	Introduction on waste			
	treatment and management	3	3	0
Chapter 2	Legal legislation and practical experience on	4.5	3	1.5
	municipal waste management			
Chapter 3			3	0
Chapter 4	Solid waste transferring and transportation system	3	1.5	1.5
Chapter 5	Solid waste recycling system	3	3	0
Chapter 6 Waste treatment principles and engineering		3	3	0
Chapter 7	Composting technology	3	2	1
Chapter 8	Sanitation Landfill	4.5	3.5	1
Chapter 9	Waste burning Technology	4.5	3.5	1
Chapter	Hazardous waste	3	3	0
10	management			
	Students' projects	9	0	9
	Total	45	30	15

Course workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)
In-class activities	(33.75 hours)		
Lectures	Understanding theories, concepts,	Class	6
	methodology and tools	participation	
Moderated in-	Understanding various policy and	Class	10
class discussions	management contexts and common	participation	
	problems in integrated solid waste	and	
	management.	preparedness	
		for	
		discussions	

In-class	Understanding various technology	Class	10
assignments, field	and facilities (principles, design,	participation	
assignment	operation and maintenance) of waste	and	
	treatment.	preparedness	
	Applying calculation for designing	for	
	the waste treatment facilities.	assignments	
Reading and	Familiarity with and ability to	Class	2.5
discussion of	critically and creatively discuss key	participation,	
assigned papers	concepts, tools and methods as	creative and	
for seminars and	presented in the literature	active	
preparation for		contribution	
lectures		to discussion	
Group	Ability to interpret data, to analyze	Quality of	5
presentation	audience, and to use the concepts,	group	-
•	tools, and methods for	assignments	
	communicating and defending the	and individual	
	ideas presented in report	presentations	
Independent work			
Group work:	Ability to interpret data, to analyze	Quality of	40
- Contribution to	audience, and to use the concepts,	group	
the group case-	tools, and methods for	assignments	
study projects	communicating information to all	and individual	
- Contribution to	participants	presentations	
the preparation	L	presentations	
and delivery of	Select one kind of waste and one	Quality of	
individual	facility to treat this waste; check the	essay	
presentation	technology diagram, engineering	Costay	
- Contribution to	design calculation and efficiency		
the web-			
application			
Course group	Ability to conceptualize and frame	Quality of	30
assignment	an integrated waste management,	developed	50
ussignment	find related literature and data,	essay	
	interpret data, use the concepts, tools	Coody	
	and methods covered in the course,		
	and draw the policy/management		
	relevant to achieve circular economic		
	in the integrated waste management		
	proposed for the selected waste		
	1		
	above.		

Dage D

	Select one kind of wastes and apply circular economic to design the integrated waste management		
Group	Ability to interpret data, to analyze	Quality of	10
presentation	audience, and to use the concepts,	•	
	tools, and methods for	assignments	
	communicating and defending the	and individual	
	ideas presented in report	presentations	
Total			113.75

Grading

The students' performance will be based on the following:

- Assessment Progress assessment (40%): Assignments in class and Homework
 - Final assessment (60%):
 - Group report (30%): The students will be divided into groups of 2
 3 students and choose one case study to analyze the success and failures of the waste management and proposed the integrated waste management for this case and then withdrawn the learnt lessons which could be transferred to Viet Nam or developing countries.
 - Final examination (30%)

Evaluation	A (8.5 – 10)
	B (7.0 – 8.4)
	C (5.5 – 6.9)
	D (4.0 – 5.4)

Course schedule

The overall schedule is provided below:

Course schedule

Week	Chapter	Торіс	Lecturer
Week	1	- Guide to the course – purpose, objectives,	Nguyen Thi
1 - 2		learning outcomes, teaching and learning method, assignment and grading.	Van Ha

Page /

		Chapter 1 Introduction of collid mosts and	
		Chapter 1 – Introduction of solid waste and	
		Waste management	
		1.1. Composition, characteristics and sources of	
		different types of wastes	
		1.2. Impacts of waste disposal on environment	
		and human health.	
		1.3. Development history of solid waste	
		management	
		1.4. Solid waste emission in industrial society	
		1.5. Urban waste management system	
		1.6. Solid waste management of HCM City	
Week	1	Chapter 2 – Legislation and experience of	Nguyen Thi
2 - 3		urban municipal waste management	Van Ha;
		2.1. Current urban municipal waste	
		management in Vietnam	
		2.2. Legislation base for solid waste	
		management in Vietnam	
		2.3. Difficulties and barriers of municipal waste	
		management in Vietnam	
		2.4. The Practical experience of municipal	
		waste management in other countries	
		2.5. The integrated waste management system	
		Assignment #1	
Week	2	Chapter 3 – Solid waste collection system	Nguyen
4	-	3.1. Municipal waste emission trends in	Xuan
•		Vietnam	Truong
		3.2. Solid waste collection system	Indong
		3.3. Smart collection system for solid waste	
		3.4. Identify the solid waste collection routes	
		Assignment #2	
Weels	2	Assignment #2	Nauvan
Week	3	Chapter 4 – Solid waste transfer and	Nguyen
5		transportation system	Xuan
		4.1. Needs of solid waste transfer station	Truong
		4.2. Classification of SW transfer station	
		4.3. Waste transportation facilities	
		·	
		4.4. Important issues for designing the transfer station	
		4.5. Select the preferable locations of transfer	
		stations	

Page 8

Week	7	Chapter 5 Solid wests recycling	Nguyen
6		Chapter 5 – Solid waste recycling	Xuan
		5.1. Recycling technologies for normal	Truong
		recycled wastes	-
		5.2. Recycling industrial inorganic wastes	
		5.3. Recycling industrial organic wastes	
		5.4. Market and recycled materials/products	
Week 7	5	Chapter 6 – Solid waste treatment principles	Huynh Thi Ngoc Han
		6.1 Mechanic treatment process	8
		6.2 Thermal treatment process	
		6.3 Biological and chemical treatment	
Week	6	Chapter 7 – Composting	Huynh Thi
8		7.1. Composting process and their control	Ngoc Han
		factors	
		7.2. Anaerobic composting	
		7.3. Aerobic composting	
		Assignment	
Week	7	Chapter 8 – Sanitation landfill	Nguyen Thi
9-10		8.1. Landfill design and operation regulations in	Van Ha
		Vietnam	
		8.2. Landfill classification	
		8.3. Location selection	
		8.4. Waste degradable process	
		8.5. Air emission and control	
		8.6. Leachate control	
		8.7. Operation, monitoring and closure of	
		landfill	
Weels		Assignment	Liverah Thi
Week 10 - 11		Chapter 9 – Incinerator	Huynh Thi
10 - 11		9.1 Incinerator design and operation regulations in Vietnam	Ngoc Han
		9.2. Incinerator classification	
		8.3. Advantage and disadvantage of i Location selection	
		8.4. Burning process	
		8.5. Air emission and control	
		8.6. Heat balance and control	
		8.7. Advanced technologies (gasification,	
		plasma incinerator)	
		Assignment	

Week	Chapter 10 – Hazardous waste management	Nguyen
12	10.1. Characteristics and classification	Xuan
	10.2. Government management for hazardous	Truong
	waste	
	10.3.Hazardous waste management	
	10.4. Advanced treatment methods	
	Assignment	
Week	Group presentation	Nguyen Thi
13	Assignment: Present the composting project	Van Ha,
		Huynh Thi
		Ngoc Han
Week	Group presentation	Nguyen Thi
14	Assignment: Present the sanitation landfill	Van Ha,
	project for municipal waste	Huynh Thi
		Ngoc Han
Week	Group presentation	Huynh Thi
15	Assignment: Present the incinerator project for	Ngoc Han,
	municipal waste; or hospital waste	Nguyen
		Xuan
		Truong

Course assignments

Course assignments will constitute a multi-part project:

- Assignment #1 (mostly in-class and a part of home reading) Policy and stakeholder analysis for managing one kind of waste.
- Assignment #2 (mostly in-class) Calculate the facilities for the sorted- waste collection from the district.
- Assignment #3 (home assignment) Select one kind of wastes and select the technology, check the engineering design calculation for the proposed facilities for treatment (composting, burning, dumping, etc.) Calculate cost benefit ratio, net present value, etc.
- Assignment #4 (mostly in-class) Prepare the report and presentation and defend for the proposed integrated waste management system.

Literature

Schmidt, Michael; Glasson, John; Emmelin, Lars and Hendrike Helbron, 2008. Standards and Thresholds for Impact Assessment. Environmental Protection in the European Union ISSN 1613-8694. 487pp.


- <u>Literature in English:</u>

- **1.** John N.Hahladakis, Plastic waste in a circular economy Plastic Waste and Recycling, 2020.
- 2. Annelise, M. de Jong, 2021. The Potential of Plastic Reuse for Manufacturing: A Case Study into Circular Business Models for an On-Line Marketplace, Sustainability.
- **3.** Ruohomaa, H., Ivanova, N., 2019. From solid waste management towards the circular economy and digital driven symbiosis, IOP Conference Series: Earth and Environmental Science.
- **4.** Obiora, B. Ezeudu, Tochukwu, S. Ezeudu, 2019. Implementation of Circular Economy Principles in Industrial Solid Waste Management: Case Studies from a Developing Economy (Nigeria), Recycling.
- **5.** Malinauskaite, J, et.al. 2017, Municipal solid waste management and waste-toenergy in the context of a circular economy and energy recycling in Europe, Energy.
- **6.** Elisabetta, Allevi, et. al., 2021. Municipal solid waste management in circular economy: A sequential optimization model, Energy Economics.
- Shikha, Dahiya et.al., 2017. Food waste biorefinery: Sustainable strategy for circular bioeconomy. <u>Bioresource Technology</u> 248(Pt A). DOI:<u>10.1016/j.biortech.2017.07.176</u>
- 8. Malinauskaite, J., 2017. Municipal solid waste management and waste-toenergy in the context of a circular economy and energy recycling in Europe, Energy.
- Literature in Vietnamese:
- 1. Nguyễn Đình Hòe, 2008. Môi trường và phát triển bền vững. Nhà xuất bản Giáo dục. Hà Nội .
- Nguyễn Đình Hương, 2007. Giáo trình kinh tế chất thải. Nhà xuất bản Giáo dục. Hà Nội. 2007.
- Nguyễn Văn Phước, 2008. Giáo trình Quản lý và Xử lý Chất thải rắn, NXB XD, 357 trang.
- **4.** Đinh Xuân Thắng, 2011, Kỹ thuật lò đốt chất thải rắn nguy hại, NXB ĐHQG HCM, 276 trang.
- 5. Nguyễn Văn Phước, Nguyễn Thị Thanh Phượng, 2006. Giáo trình kỹ thuật xử lý chất thải công nghiệp, NXBXD, 360 trang.
- 6. Nguyễn Đức Khiển, 2003. Quản lý Chất thải nguy hại, NXB XD HN.
- 7. Lâm Minh Triết và CTV, 2015. Kỹ thuật Môi trường, NXB ĐHQG HCM.
- 8. Nguyễn Xuân Nguyên, Trần Quang Huy, 2004. Công nghệ xử lý rác và chất thải rắn, NXB KHKT –HN, 240 trang.
- **9.** Nguyễn Đức Lượng, Nguyễn Thị Thùy Dương, 2003. Tập 2. Xử lý chất thải hữu cơ NXB ĐHQG HCM, 276 trang.
- **10.** Video

